
35

Chapter 4 – Approach
4.1 Introduction

4.1.1 Purpose

In this chapter we describe the design and architectural aspects of the Database

Integration System. The design is expressed in sufficient detail so as to enable all the

developers to understand the underlying architecture of the system.

Highlights of the chapter:

1. Overall architecture of the system.
2. Data Design.
3. Component and interface Design.

4.1.2 Design Considerations and Guide lines

ETL (Extract – Transform – Load) and schema federation (Figure 4.1) are the underlying

strategies that we have considered during the designing of the Database Integration Tool.

Figure 4.1 – Schema Federation and ETL

Database 4 Database 2

Database 1 Database 2 Database 3

 Integration / ETL

36

Data extracted directly from the connected databases or by combining schemas of

different databases. And output is saved internally. Saved data is further manipulated

and transferred to another connected database.

Extract‐Transform‐Load (ETL) is a practice that is used to take information from one or

more sources, normalize it in some way to some convenient schema, and then insert it

into some other repository.ETL for data warehousing, where regular updates from one or

more systems are merged and refined so that analysis can be done using more

specialized tools. Typically the same process is run over and over again, as new data

appears in the source application(s).

All configuration files used in the Database Integration System are XML files. E.g.

Connected Database configuration file, federated data description file.

Database Integration System will be developed using java and java related technologies.

So all design done to be compliant with java version 6.

4.1.3 Assumptions and Dependencies

Database Integration system is platform independent and requires resources that will be

depending on the size of the dataset on which the system works on.

4.2 Development Methods

Database Integration System is developed as an open source product. So by nature it is

intended to expand. Object Oriented Methodology is an ideal approach for such system,

because of the inherent attributes described below.

37

a) Maintainable

Object Oriented (OO) methods make code more maintainable. Identifying the

source of errors becomes easier because objects are independent. The principles of

good OO design contribute to an application's maintainability.

b) Reusable
Because objects contain both data and functions that operate on data, objects can

be thought of as self-contained "boxes". This feature makes it easy to reuse the

code in new systems. Messages provide a predefined interface to an object's data

and functionality.

c) Scalable
OO applications are more scalable than their structured programming roots. As an

object's interface provides a roadmap for reusing the object in new software, it

also provides you with all the information you need to replace the object without

affecting other code.

d) Real-World Modeling
Object‐oriented system tends to model the real world in a more complete fashion

than other methods. Objects are organized into classes of objects, and objects

are associated with behaviors. The model is based on objects, rather than on data

and processing.

e) Improved Reliability and Flexibility
Object‐oriented systems are more reliable than traditional systems. Because

objects can be dynamically called and accessed, new objects may be created at

any time. The new objects may inherit data attributes from one, or many other

objects. Behaviors may be inherited from super‐classes, and novel behaviors may

be added without effecting existing systems functions.

38

Components of the system are separated in to logical layers. Therefore Database

Integration System design is strengthen by the properties of the Layered architecture

such as,

1. Interoperability and Greater Compatibility with Different Databases.

2. Better Flexibility

3. Increased Life Expectancy ‐ Increased product working life expectancies as

backwards compatibility is made considerably easier.

4. Value Added Features ‐ It is far easier to incorporate and implement value added

features into products

5. Modularity

6. Task Segmentation ‐ Breaking a large complex system into smaller more

manageable subcomponents allows for easier development and implementation

39

4.3 Database Integration System Layered Architecture

Figure 4.2 – Database Integration Tool Layered Architecture

Components of the Database Integration System are categorized in to seven layers.

1. Database Communication Layer

2. Data abstraction Layer

3. Schema mapping and Database integration Layer

4. Integrated Query Processing Layer

5. Intermediate Storage Layer.

6. User View.

7. Utilities

4.3.1 Database Communication Layer

The database communication layer consists of features to communicate with different

databases. To enable communication between system and a particular database,

 Intermediate Storage

Oracle Database
Connection

Database Type X
Connection

 Database Abstraction Layer

 Schema Mapping / Integration

Database Type Y
Connection

Integrated
Query Processing

 User Views

 Utilities

40

developers must implements an abstract interface 1using database management system

dependent Java Database Connectivity Driver2. The interface consists of functions to

retrieve data, Meta data from databases.

4.3.2 Database Abstraction Layer
In this layer database tables and table columns are abstracted in to a common

representation. Therefore the user doesn’t see any difference between the storage

structures of each database.

4.3.3 Schema mapping and integration Layer
Federated views are created using connected databases. And user defined views are

saved in XML files. Federated data description file contain all information required to

integrate databases, for an example Database reference names, selected columns, Join

attributes from each table.

 4.3.4 Integrated Query Processing Layer
Data retrieved from different connected databases are merged according to the

federated query description.

In database federation, record set to be retrieved from each database is stored in the

Federated data description file. After retrieving data sets system it‐self integrate them to

derive final integration view.

4.3.4 Intermediate Storage Layer
The results derived from Query processing are saved in an embedded database (derby).

Saving data in an embedded database allow manipulating easily.

1 An interface in the Java programming language is an abstract type that is used to specify an interface
(in the generic sense of the term) that classes must implement.
2 A JDBC driver is a software component enabling a Java application to interact with a database. To
connect with individual databases, JDBC (the Java Database Connectivity API) requires drivers for
each database. The JDBC driver gives out the connection to the database and implements the protocol
for transferring the query and result between client and database.

41

4.3.4 User views
This layer includes functions related to query embedded database as well as connected

databases.

4.3.5 Utilities
Data compression and other utilities are included in this layer.

4.4 Database Integration System - Detailed Design

In this section we describe the conceptual modeling of each layer using UML class

diagrams

4.4.1 Static Modeling

4.4.1.1 Database Communication

Figure 4.3 – Database Communication Classes

If user wants to connect a database to the tool, “Database” is the interface (Figure 4.3) he

should be implementing using a Java Database Connectivity Driver. DatabaseRefClass

contains required data to establish a connection. Each time a new connection is

established, connection data is stored in a configuration file under a reference name.

When a new connection is required communicating with a connected database,

Database
public Connection con
public ResultSet rs
public String con_string
public String uname
public String password

getTableNames(Vector) : Vector
getConnection() : Connection
executeStmt(sql : String) : boolean
getResulst(sql : String) : ResultSet
closeConnection() : Boolean
getColumnslist() : Vector
getResulst_with_con() : ResultSet

<<Interface>>

MYSQL Database

MS SQL Database

DatabaseRefClass
public String databaserefname
public String databasename
public String connectionString
public String drivername
public String username
public String password
public String dbType

loadConnectionData()

Database_Connection_Manager

getConinterface() : Database

42

connection parameters are extracted from that property file and loads to the

“DatabaseRefClass”. According to the properties of the “DatabaseRefClass”,

Database_Connection_Manager will instantiate a subclass of “Database” class. Database

connection properties are saved in XML format.

Class description

Class name Database
Purpose Provides an abstract interface for Database Connection
Methods Method Name Description

getTableNames(String schema) Retrieve table names of the
schema

getResulst_with_con(String sql) Create a connection and get
Result Set

executeStmt(String sql)throws Exception Execute a given SQL
statement

getConnection() Establish a connection
according to a given
connection String

getColumnslist(String table) Get Tables and it’s columns
getResulst(String sql) Get the results from already

established connection
closeConnection() Close open connection

Attributes Attribute Name Description
con Java.sql.Connection Object
Con_string Connection String
Uname User name
Password Encrypted Password

Algorithms

Class name DatabaseRefClass
Purpose Data required to make a Database connection is stored in this class
Methods Method Name Description

loadConnectionData() Extract required Data from XML configuration file

Attributes Attribute Name Description
Databaserefname Database reference name as user defined
Databasename Actual instance name
connectionString Connection String
Drivername Driver to be used
Username User name
Password Encrypted password
dbType Database type

Algorithms XML parser is used to extract data from configuration file using
reference name.

43

Class name Database_Connection_Manager
Purpose This class decides which subclass should be implemented according to

the given data.
Methods Method Name Description

getInstence()

Attributes Attribute Name Description

Algorithms According to the dbtype field a subclass of Database is selected

4.4.1.2 Data Abstraction Layer

Figure 4.4 – Database independent view

Data abstraction layer builds a common view of connected databases. Tables and

columns of the connected databases are organized in to a tree view without considering

the underlying database type.

DatabaseRefClass
public String databaserefname
public String databasename
public String connectionString
public String drivername
public String username
public String password
public String dbType

loadConnectionData()

Database_Connection_Manager

getConinterface()

DBcolumn
TableClass table
String columnname
String tyep

ColumnList

columnList()

Table
DatabaseRefClass dbclass
String tablename

DBComponentList
DefaultMutableTreeNode top

addNodestoTree()
getConnectedSites()

Database
public Connection con
public ResultSet rs
public String con_string
public String uname
public String password

<<abstract>>

TableList

tableList()

44

 DATABASE A
 TABLE 1
 COLUMN 1
 COLUMN 2
 TABLE 2
 COLUMN 1
 COLUMN 2
 DATABASE B
 TABLE 1
 COLUMN 1
 COLUMN 2

Tables and columns are referenced using their path names. For an example column 1 of

table 1 resides in Database A is referred to DATABASE A: Table 1: Column 1

So each tables and columns can be referenced without conflicting names.

Class Description

Class name DBComponentList
Purpose Graphical user interface displays a tree view listing of tables and

columns of those tables. DBComponentList class associate with
TableList and Column list to build table tree of connected databases

Methods Method Name Description
getConnectedSites() Retrieve information from configuration file lists

connected databases
addNodesTotree() Nodes add to recursively to the tree view

Attributes Attribute Name Description
DefecultTreeNode Root node for tree view

Algorithms Connected databases are listed from the XML configuration file and
each database table and its columns are added to the tree
recursively. Root node is named “DATABASES” and second level
nodes are reference names and third level is tables. Forth level of
the tree is columns of each table.

Class name TableList
Purpose List the Tables of the connected database
Methods Method Name Description

tableList(String ref) List tables of the connected database

Attributes Attribute Name Description

Algorithms Table type classes created representing Tables of the database.
Table object contains database reference name and table name

45

Class name ColumnList
Purpose List the columns of the connected table
Methods Method Name Description

columnList(String ref) List columns and data type of the given table

Attributes Attribute Name Description

Algorithms Given table is described; Column object is created according to the
description.

4.4. 1.3 Schema Mapping and Database Integration Layer

Figure 4.5 – Database Integration Layer.

Schema mapping and Integration layer primarily focusing on creating federated database

views. Federated Database queries are stored in a XML file. Query processing layer

interpret the file and fetch data from connected databases according to the description.

Federated data description XML file is self descriptive. It contains information about the

database systems that should refer to fetch data, datasets that should retrieve from each

database, what columns of the dataset must be merge to join tables.

DBcolumnRef
database
database_ref_name
table
column
type

DisbQuerySelection

getSelectedItem()

DisQuery
output : HashSet
tables : HashSet
joinon : HashSet

intialize()

CreateXML
fname : String

createXMLFile()

DistributedQueryCreater

start(select : String, from : String, where : String, file : File)
processSelectionList(select : String)
processsWhereClause(where : String)
processtables(from : String)
processSites()

46

To create a federated dataset, user selects required columns from connected databases

using tree view, and tables that the selected columns belongs to. Then user should

specify the join columns of the where clause just as tables resides in a one database.

After that distributed query creator divides the whole query to sub queries that are

suitable to execute on individual databases.

When distributed query is processing, each sub query is executed on the particular

database and result dataset is extracted. In the next stage those results sets are merged

according to the specified join/merge column.

Example

User generated query

Select ‐ > database1:table1:column1, database1:table1:column2,
database1:table2:column1, database2:table1:column1
From ‐ >database1:table1, database1:table2, database2:table1
Join ‐ > database1:table1:column1 = database2:table1:column1

DistributedQueryCreator will create the sub queries such as:
Query for database 1

Select table1 .column1, table2. Column 2
From table1, table2

Query for database 2

Select table1.column1
From table1
Class description

Class name DistributedQueryCreator
Purpose Main class responsible for creating federated query description. This

class process the user created query to separate sub queries that can
execute on connected databases

Methods Method Name Description
Start() Initialize Parameters
processSelectionList() Divide selected columns in to sub‐queries
processWhereClause() Where clause is created for the sub queries
processTables() Identify the different tables of the same site and

join them to create one SQL sub query
processSites() Identify the distinct databases

47

Attributes Attribute Name Description

Algorithms User selects the required columns from connected tables without
considering the database. When processing that view tool should divide
it in to sub queries. Those sub queries should be able to execute
individually at connected databases. And result sets are merged by the
system to produce the required integrated view.

Class name DisbQuerySelection
Purpose Selected object from the database tree is processed and inserted

appropriately. For an example when selecting columns for “select”
clause it should be in (refname:table:column) format, and table
selection should be in (refname:table). Multiple tables and columns
must be separated by a coma.

Methods Method Name Description
getSelectedItem() Format selected object according to the target query

regain.

Attributes Attribute Name Description

Algorithms

Class name CreateXML
Purpose Federated data description is saved in XML format. Those XML files are

input to the query processing layer which does the real time execution.
Methods Method Name Description

Attributes Attribute Name Description

Algorithms Sample XML file
Refer to appendix D

Class name DisQuery
Purpose Processed federated data description object representation
Methods Method Name Description

Attributes Attribute Name Description
Output Columns of the out‐put
Tables Tables participated from each database
joinon Join columns of the each sub‐queries

Algorithms

48

4.4.1.4 Integrated query processing layer

Figure 4.6 – Query Processing

Database integration layer decompose federated view in to sub‐queries that each

database should execute individually. As explained earlier basic terminology is execute

sub queries in connected databases and result data sets are merged to generate

federated view.

ObjectDeescriptionEditor is the user interface that reads the user specified configuration

parameter file. Using extracted information an instance of “MYView” will be created.

XMLprocessor instance will be used to extract information from the configuration file.

Using “MyView” instance “IntegrationMain” class will create statement to be executed at

each connection.

CreateRowSet represents a result set of a sub‐query and JoinableRowSet represents a

ObjectDescriptionEditor
XMLfile

IntegrationMain
descripter : String
configFile : File

constructDataset()
constructConnections()
loadDatabaseConnectionData()
checkFile()
createDBrep()

MyView
dataSet : HashMap
Connections : HashMap
deriveData : HashMap
consolDbs : Vectror

DatabaseRep
sql
uname
password
connection

XMLprocessor

loadFile()
getValue(tagname : String)

JoinRowSets

joinrowsets()

JoinableRowSet
CachedRowSet : com.sun.rowset.CachedRowSetImpl
joinon : String

ProcessingMain

getRowSets()
dataset()

CreateRowSet
connectionst : String
sql : String
joinon : String
connectedto : String
uname : String
password : String

getRowSet()
createRows()

49

result set and column should be used to join with other data sets. JoinableRowset

contains CachRowSet and join attribute.

Figure 4.7 – Join Result sets

Classes and responsibilities

Class name ProcessingMain
Purpose This is the control class of the database integration process
Methods Method

Name
Description

getRowSets() Execute sub queries on its respective database and collect
record sets

dataset() Join record sets collected above and create the federated
view

Attributes Attribute Name Description

Algorithms

Class name IntegrationMain
Purpose Construct required parameters for each sub query and execute.
Methods Method Name Description

constructDataset() Execute sub queries on connected
databases

constructConnections() Connections of the DatabaseRep instances
are established.

loadDatabaseConnectionData() Parse configuration file to grab the data
checkFile() Validate configuration file
createDBrep() Create DatabaseRep instances to represent

database connection

Attributes Attribute Name Description

Algorithms

CacheRowSet

CacheRowSet
 +join column

CacheRowSet CacheRowSet

 JoinRowSetImpl

CacheRowSet
+join column

CacheRowSet
+join column

50

Class name XMLprocessor
Purpose XML processor basically dealing with reading attributes from the

federated data description
Methods Method Name Description

loadFile() Open and parse the configuration file
getValue(target) Read the value of target XML tag

Attributes Attribute Name Description

Algorithms Java JDOM or any XML package bundled with java can be used to read
the configuration file

Class name CreateRowSet
Purpose javax.sql.rowset. CachedRowSet is used to join different result sets upon

a common field. “CreateRowSet” create a CachedRowSet for each
database described in federated data configuration file.

Methods Method Name Description
createRows() Create CachedRowSet instance
getRowSet() Returns JoinableRowset using output of the above

method and join column described in the configuration
file.

Attributes Attribute
Name

Description

Connectionst Connection String that state the database name and the
instance name.

Sql SQL query that used to retrieve data
Joinon Join attribute that used to combine with CachedRowSet to

create JoinableRowset
Connectedto Database reference name
Uname User name for login to the database
password Password to login to the database

Algorithms

Class name JoinableRowSet
Purpose com.sun.rowset.JoinRowSetImpl is used to join CachedRowSet’s.

Therefore CachedRowSet should be incorporated with join column,
instance containing CachedRowSet + join column is represented by
JoinableRowSet

Methods Method Name Description

Attributes Attribute Name Description

Algorithms

51

Class name JoinRowSets
Purpose com.sun.rowset.JoinRowSetImpl is used to join “JoinableRowSet”

instances.
Methods Method Name Description

Joinrowsets() Merge JoinableRowSet’s

Attributes Attribute Name Description

Algorithms JoinRowSet join = new JoinRowSetImpl();
 join.addRowSet(“JoinableRowSet1”,"joinOn1");
 join.addRowSet(“JoinableRowSet2”," joinOn2");

Class name MyView
Purpose Represents the federated data object.
Methods Method Name Description

Attributes Attribute Name Description
Dataset Columns of the output
Connections Reference names of the database connections

Algorithms

52

4.4.1.5 Intermediate Storage Layer

Figure 4.8 – Store data into embedded database
In transform phase of the ETL3, extracted data is stored intermediately. And there we

need apply several operations like grouping, summation and filtering to transform data.

So ultimate requirement more close to consider data stored as another database.

Therefore embedded database is used to store data intermediately. Derby embedded

database is selected as intermediate storage.

 Apache Derby, an Apache DB subproject, is an open source relational

database implemented entirely in Java and available under the Apache License, Version

2.0. Apache Derby has inherent attributes that exactly match Database Integration

System Requirements.

• Derby has a small footprint -- about 2 megabytes for the base engine and

embedded JDBC driver.

• Derby is based on the Java, JDBC, and SQL standards.

3 Extract Transform Load

IntermediateStorage

getConnection()
inset_into_db(JoinRowSet, record_count)
prepare_to_insert()
createTable()
checkTableExits()

InterMstorageManager

initOperation()
ExecuteQueryOnInetrMDB

ExecuteQueryOnInetrMDB()
executeQuery()
execute()
select_query()
insert_query()
update_query()

•

ba

•

Cl

•

•

dr

da

in

th

Fig

“In

ac

co

de

Derby

ased solution

Derby

lient JDBC d

Derby

When

river, the Der

atabase proce

side the sam

e application

gure 4.10 –

Interm

nterMstoreM

ccording to

onnection m

erby databas

provides an

n.

also suppor

driver and D

is easy to in

an applicatio

rby engine d

esses to start

me Java Virtu

n just like an

Embedded D

mediate sto

Manager” in

the reque

management

se.

n embedded J

rts the more f

Derby Netwo

nstall, deploy

on accesses

does not run

t up and shu

ual Machine

ny other jar f

Database Co

orage class

n the initia

est type. “I

t and “Execu

JDBC driver

familiar clie

ork Server.

y, and use.

a Derby dat

in a separate

ut down. Inst

(JVM) as th

file that the a

onnectivity

s hierarchy

al class tha

ntermediate

uteQueryOn

r that lets yo

ent/server mo

abase using

e process, an

tead, the Der

he application

application u

y consists

at accepts

eStorage” c

nInterMDB”

ou embed De

ode with the

the Embedd

nd there are n

rby database

n. So, Derby

uses.

of three

user reque

class basica

is for exec

erby in any J

Derby Netw

ded Derby JD

no separate

e engine runs

y becomes p

main cla

est and dire

lly dealing

uting querie

53

Java-

work

DBC

s

art of

asses.

ected

with

es on

54

4.4.1.6 Data archiving using XML

Figure 4.11 – Data export classes

Archive data using XML is another main function product expected to provide. Required

data to be archived is queried from intermediate storage or connected database using a

SQL statement. Retrieved data and its structure are saved in XML and compressed using

XMILL. In other words archived dataset has two files, one XML file containing data and

another containing structure of the dataset.

XMill is a new tool for compressing XML data efficiently. It is based on a regrouping

strategy that leverages the effect of highly‐efficient compression techniques in

compressors such as gzip. XMill groups XML text strings with respect to their meaning

and exploits similarities between those text strings for compression. Hence, XMill

typically achieves much better compression rates than conventional compressors such as

gzip.

XMLexporter

initExport()

CreateXMLFile
Fname

startDoc()
addRootElement()
newRecord()
addElemnt()
appendRecord()
saveDocument()
compressXML()

ConnectedDbtoXML

readData()
getConnection()
startDataSaving()
startStructureSaving()

InternalStorageToXML

readData()
getConection()
startDataSaving()
startStructureSaving()

XMILLcompress
files[] : String

compress()
uncompress()

Encryptor
fileName : String
keyFile : String

encryption()
decryption()

55

XML files are typically much larger than the same data represented in some reasonably

efficient domain‐specific data format. One of the most intriguing results of XMill is that

the conversion of proprietary data formats into XML will in fact improve the compression

‐ i.e. the compressed XML file is (up to twice) smaller than the compressed original file!

And this astonishing compression improvement is achieved at about the same

compression speed.

Class description

Class
name

XMLExporter

Purpose Initiation class for data export. Environmental variables are loaded for the
execution

Methods Method Name Description
InitExport() Initialize the data export.

Attributes Attribute Name Description

Algorithms XMLExporter basically initiate the XML exporting process. It’s initiate the
required object ConnectedDBtoXML / InternalStorageToXML according to
the source.

Class
name

ConnectedDBTOXML / InternalStoregeToXML

Purpose Retrieve data from the source. Initiate the XML data file, data structure file.
Data is recursively add to the data file.

Methods Method Name Description
readData() Read the data according to the SQL query given
getConnection() Establish the connection to the source repository
startDataSaving() Recursively add records to the XML data file
startStructureSaving() Extract the retrieved dataset structure and saved in to

the data structure XML file

Attributes Attribute Name Description

Algorithms Dataset to be retrieved from the source is specified by SQL query. This class
establishes the connection with the source and fetches the data by
executing the SQL. And tool creates two files to archive the results, data file
and the data‐structure file. This class is responsible for creating both these
files using a “CreateXMLFile” instance.

56

Class
name

CreateXMLFile

Purpose Creating XML files
Methods Method Name Description

startDoc() Stating a new XML document and set properties – this will
create a document object in the memory

addRootElement() Creating the root element according purpose of the XML file
newRecord() Adding a new value to an existing element
addElement Add new element to the file
appendRecord() Append new value to an existing element
saveDocuemnt() Save the document to an actual file

Attributes Attribute Name Description

Algorithms It is assumed that javax.xml package is used to create XML files. First it is
supposed to create a Document object in the memory
DocumentBuilderFactory documentBuilderFactory =
DocumentBuilderFactory.newInstance();
 DocumentBuilder documentBuilder =
documentBuilderFactory.newDocumentBuilder();
 document = documentBuilder.newDocument();

and add elements as necessary
creating root element

rootElement = document.createElement(elemnt);
 document.appendChild(rootElement);

adding a new element
Element em = document.createElement(col);

 em.appendChild(document.createTextNode(val));

Class
name

XMILLCompress

Purpose Execute XMILL to compress given list of files
Methods Method Name Description

Compress() compress given list of files
Uncompress() uncompress given list of files

Attributes Attribute Name Description
Files[] List of relative path names of files to be compressed

Algorithms XMILL binaries are used to compress given files. System will create a
different process for the execution
Process process = Runtime.getRuntime().exec()

XMill is a special‐purpose compressor for XML documents that typically achieves

substantially better compression rates. For large files, we achieved compression rates

57

twice as good as gzip's compression rate. XMILL works on a file‐by‐file basis. A given file

with extension '.xml' is compressed into a file with extension '.xmi'. Any other file without

extension '.xml' is compressed into a file by appending extension '.xm'. Reversely, the

original file is obtained by replacing extension '.xmi' with extension '.xml' or by removing

extension '.xm'.

Class
name

Encryptor

Purpose For additional security requirements compressed XML files can be
encrypted. This class is used to encrypt and decrypt files. Encryption and
decryption is based on an external key. Tool can generate an encryption key
if user doesn’t provide an acquiescent key.

Methods Method Name Description
Encryption() Encrypt files using a key
Decryption() decrypt files using a key

Attributes Attribute Name Description

Algorithms Key size is 8192 bytes
Data Encryption slandered is used for file encryption
The Data Encryption Standard (DES) is a block cipher (a form of shared
secret encryption) that was selected by the National Bureau of Standards as
an official Federal Information Processing Standard (FIPS) for the United
States in 1976 and which has subsequently enjoyed widespread use
internationally.

58

4.4.2 Static Modeling – Package Modeling

Figure 4.12 – Component Diagram

Package diagram represent the different layers of a software system to illustrate the

layered architecture of a software system. DBSI is the main package initialize the

program. GUI contains graphical user interface classes. “DBInterface” package contains

interface classes for each database management system and “DBStructure” contains

classes for generate abstract view of databases. Distributed query, Integration and

InterMstorage contain classes of the corresponding layers. “XMLExport” contains class

used to export data as a XML. DataCompression and Security contains classes for XMILL

compression and encryption.

GUI

DBInterface
DBSI

DBStructure

DistributedQuer
y

InterMstorage

Integration

XMLExport

DataMigration

DataCompressi
on

Security

59

4.5 Dynamic Design – Object Interaction

In this Section we depicts the conceptual interaction of objects in important usage

scenarios

4.5.1 Connecting to a Database

Different functions of the Database Integration Tool required establish connections with

pre‐configured databases. For an example query processing each sub‐query has to be

executed on related database.

 Figure 4.13 ‐ Connecting to a Database sequence diagram

4.5.2 Add new Database reference
Before use any compliant database instance with the system, it must be added to the

configuration files. New database registering function allows add new database

reference.

 Figure 4.14 ‐ Add new Database reference sequence diagram

 :
Database_Connection_Manager

 :
XMLprocessor

 :
DatabaseRefClass

 : MYSQL
Database

loadFile()

loadConnectionData()

:DatabaseRefClass

getConnection()

:New
ConnectionGUI

 :
DatabaseRefClass

 :
Database_Connection_Manager

 :
XMLprocessor

setData()
testConnection()

newConnection()
setElement()

60

4.5.3 Create Federated database view

Figure 4.15 ‐ Create Federated database view sequence diagram

 “FederatedqueryGUI” is the instance of GUI that user selects columns from

connected databases. “DistributedQueryCreator” subdivide the federated view in to sub

queries.

:FederatedQuer
yGUI :

DistributedQueryCreater

 : DisQuery

 :
DisbQuerySelection

 : DBcolumnRef

 :
CreateXMLFile

start(String, String, String, File)

intialize()

getSelectedItem()

processSelectionList(String)

processsWhereClause(String)

ColumnSpec

processtables(Strin)

startDoc()

saveDocument()

61

4.5.4 Federated query processing

Figure 4.16 ‐ Federated query processing sequence diagram

“ObjectDescriptionEditor” is the GUI component that loads the federated data

description in to the system. And from sub‐queries system creates “joinablerowset”

instances. “JoinRowSet” integrates joinablerowset’s to create federated view.

 :
ObjectDescriptionEditor

 :
ProcessingMain

 :
IntegrationMain

 : MyView

 : DatabaseRep

 :
CreateRowSet

 :
JoinableRowSet

 : JoinRowSets

init()

loadDatabaseConnectionData()

create() new()

createRows()

newJoinableRowSet()

getRowSets()

joinrowsets()

dataset()

62

4.5.4 Data Archiving

Figure 4.17 ‐ Data Archiving sequence diagram

Saved data files are provided to the XMILLcompress as an input. If user requires

additional security, compressed files can be encrypted using an “Encryptor” instance.

 : XMLexporter :
ConnectedDbtoXML

 :
CreateXMLFile

 :
XMILLcompress

 : Encryptor

initExport()

getConnection()

readData()

startDoc()
startDataSaving()

addRootElement()

addElemnt()

newRecord()

saveDocument()

startStructureSaving() startDoc()

addRootElement()

addElemnt()

newRecord()

saveDocument()

compress()

encryption()

63

4.6 Graphical User Interface

When designing Graphical User Interface (GUI) for the Database Integration Tool, we

mainly focused on the need of working with several database instances. Also other high

lighted requirements such as comparing different data sets, structural mapping of

different data sets. And users of the tool are well experienced with software products.

So IDE (Integrated Development Environment) style user interface is designed as the

main interface of the Database Integration Tool.

Tool Bar / Menu Bar

Connected

Database – Tree

list

Multiple Document Interface

Figure 4.18 – Main Interface.

Designed GUI for the Database Integration tool is mainly consist of three parts, Menu bar,

left panel consist of tree view of connected database and right side Multiple Document

Interface. All functional windows are open inside MDI interface. Therefore database

structure can be shared among all other functional interfaces. Other advantages of using

above GUI model can be stated as below,

• With MDI, a single menu bar and/or toolbar is shared between all child windows,
reducing clutter and increasing efficient use of screen space.

• An application's child windows can be hidden/shown/minimized/maximized as a
whole.

• Features such as "Tile" and "Cascade" can be implemented for the child windows.
• Possibly faster and more memory efficient, since the application is shared, and

only the document changes. The speed of switching between the internal
windows is usually faster than having the Operating System switch between
external windows.

• Can have keyboard shortcuts to quickly jump to the functionality you need (faster
navigating), and this doesn't need the OS or window manager support, since it
happens inside the application.

64

4.6.1 Graphical User Interface Detail Design

New Database Connection Window

Connection Reference
name

Text field

Connection Type Drop down
Database Server Text field
Database Instance Text field
User name Text field
Password Text field
 Add connection

Button
Check
Connection
Button

Connection Type – list box of database types that system supports

Database Server – Server name connection manager should referenced

Database instance – instance name of the database

User name – login name

User should check the connection first. Initially Add connection button is deactivated. If

only the connection is valid and possible to establish tool will activate the “Add

connection button”.

New Federated Data description Selected column list Text field
Table List Text field Join column List Text field

Create query Button Edit Existing query
button

Vertical scrollbars of the above text fields has to be disabled.

65

Integrated Query Processing Window

 Tool Bar

Result Area

Integrated query window contain main two areas, toolbar and result area. Results area

shows processing status, query results of the each operation.

Data Migration Window

 Reference connection drop down
 SQL Query Editor

Buttons

In data migration window user should be able to select the source database. SQL Editor

specifies the query for selecting data set. Buttons contain for view result set, save result

set, export result set, export XML operations. Results of a query will be displayed in a

separate window. Save result set option will save the result in internal database. Export

result window should allow selecting a destination

